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On Regge kinematics in SCET
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8057 Zürich, Switzerland

We discuss the kinematics of the particles that make up a Reggeon in field theory, using the
terminology of the Soft Collinear Effective Theory (SCET). Reggeization sums a series of strongly-
ordered collinear emissions resulting in an overall Reggeon exchange that falls in the Glauber or
Coulomb kinematic region. This is an extremely multi-scale problem and appears to fall outside of
the usual organizing scheme of SCET.

1. INTRODUCTION

In the 1960’s it was discovered, through a combina-
tion of general principles and phenomenology, that the
high energy behavior of hadron scattering amplitudes is
governed by Regge exchanges, in particular by Pomeron
exchange[1, 2, 3, 4, 5]. The region of applicability for
these techniques is

s → ∞ t fixed (1)

where s, t are the usual Mandelstam variables. While
it is known how Regge behavior emerges in a field the-
ory, the original applications were not derived from any
fundamental theory of the strong interactions. With the
advent of QCD, Regge behavior has also been found for
quarks and gluons[6, 7, 8, 9, 10, 11, 12, 13, 14]. These are
applicable in the Regge region as long as t is large enough
that a perturbative treatment is possible. This has led
to concepts such as the “Reggeized gluon” and the “hard
Pomeron”. Most recently, these ideas have been revived
in the experiments at HERA[15]. While the “hard” and
“soft” Reggeon regions are phenomenologically distinct,
both types of behavior exist1.

In a more recent development, an effective field theory
for the QCD interactions of very high energy quarks and
gluons has been formulated. This separates the high en-
ergy degrees of freedom interacting with a high energy
particle into collinear modes and soft modes, hence the
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1 Note that the word ”soft” in traditional hadronic usage differs

somewhat from the same word in the Soft Collinear theory, which

has a more technical definition described below.

name Soft Collinear Effective Theory (SCET)[16, 17, 18,
19, 20, 21]. This theory has been very useful in organiz-
ing theoretical calculations, especially in the decays of
heavy hadrons and high energy phenomena.

If the high energy behavior of scattering amplitudes is
dominated by Regge exchange, one should expect that
these ideas must also find a description within a theory
such as SCET that describes the high energy degrees of
freedom. To this end we here discuss the ideas of Regge
theory in the language of SCET. There must be a region
of compatibility of these two approaches. It turns out
that a Reggeon exchange is an unusual object in SCET,
one which emerges from a ordered series of collinear ex-
changes but which produces an object of a different char-
acter.

The relevance of Regge exchange for phenomenology
follows from the emergence of power-law behavior for
scattering amplitudes. An amplitude that behaves like
(αs ln s)n in some order of perturbation theory sums to
sα(t) in the Regge region. Note that the traditional no-
tation for a Regge exponent α(t) should not be confused
with the QCD coupling αs. The latter will always carry
the subscript s in this paper. Since Reggeized gluons
and the hard Pomeron (and also the soft Pomeron) carry
α(t) > 0, this can lead to an enhanced power behavior
of interactions in the Regge region, with an effect larger
than estimated in naive perturbative power counting.

2. KINEMATIC REGIONS

The asymptotic Regge behavior comes from the sum-
mation of the ladder graphs shown in Figure 1. In this
figure we treat all particles as scalars because we are pri-
marily interested in kinematics, although we will refer to
the particles as gluons.

http://arxiv.org/abs/0908.4559v1
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p1 p
′

1 = p1 + q

p2 p
′

2 = p2 − q

FIG. 1: The ladder graphs

p1 p
′

1 = p1 + q

p2 p
′

2 = p2 − q

FIG. 2: The cut ladder graphs

These ladder diagrams can be interpreted in a couple of
ways. If one is concerned with the net effect of the ladder
sum, one sees it as the t channel exchange of a single
object - a Reggeon. Alternatively we can reconstruct the
kinematic behavior of the ladder sum from consideration
of the discontinuities in the diagrams, and the relevant
discontinuities turn out to be those where the cut lines
are the rungs of the ladder, as in Fig 2. In this picture the
Reggeon corresponds to the emission of on-shell particles
in the s-channel.

We describe the scattering process p1 + p2 → p′1 + p′2,
where as usual s = (p1 + p2)

2, t = (p1 − p′1)
2 and

u = (p1 − p′2)
2. Defining a right-moving light-like four-

vector nµ = (1, 0, 0, 1) and a left-moving one n̄µ =
(1, 0, 0,−1), we display momenta in light-cone coordi-
nates p = (p+, p−,p⊥), with p+ = nµpµ, p− = n̄µpµ. In
these coordinates an invariant mass is p2 = p+p− −p⊥

2.
We treat particle 1 as right-moving in the center of mass,
and particle 2 as left-moving,

p1 = (p+
1 , 0, 0) p2 = (0, p−2 , 0) (2)

with p+
1 = p−2 =

√
s.

As mentioned, the kinematic region of Regge theory is

s → ∞, t fixed. Let us define a small parameter

λ =
√

−t/s . (3)

By definition, the Reggeon then has momentum

q2 = −sλ2 (4)

The individual components can be found from the on-
shell condition for the final particles

(p1 + q)2 = 0 ⇒ (p1 + q)+q− − q2
⊥ = 0

(p2 − q)2 = 0 ⇒ −(p2 − q)−q+ − q2
⊥ = 0 (5)

This implies that the components of the Reggeon are of
order

q ∼
√

s(λ2, λ2, λ) (6)

Since the only principle used in this relation was the
kinematics of the external particles, we can see an im-
portant and general feature. To connect an energetic
right-moving particle with an energetic left-mover, with
limited momentum exchange, one requires an exchanged
particle which is dominated by the transverse momen-
tum. This kinematic configuration has been called either
Coulombic or Glauber[22], as it is typical of the region
of Coulomb exchange at very high energies.

In SCET one also classifies the momenta by powers of
a small scale. The standard names and scaling properties
for these are

Collinear ⇒ p ∼
√

s(1, λ2, λ), p2 ∼ sλ2

Soft ⇒ p ∼
√

s(λ, λ, λ), p2 ∼ sλ2

Ultra − soft ⇒ p ∼
√

s(λ2, λ2, λ2), p2 ∼ sλ4 (7)

Hardly studied in SCET is the Glauber region[23]

Glauber ⇒ p ∼
√

s(λ2, λ2, λ), p2 ∼ sλ2 (8)

The Glauber region can be considered as an endpoint of
the soft region in which the longitudinal momenta are
particulary small, but the key feature describing the re-
gion is that the dominant component is the transverse
momentum, which itself is of order λ. There does not
exist a consistent treatment of this region yet.

In SCETI , the small parameter is taken as

λI =
√

Λ/Q (9)

with Q being a large scale, and in SCETII , the parameter
is

λII = Λ/Q (10)

Since Q ∼ √
s, our parameter is close to λII , if Λ ∼

√
−t.

(Note however that
√
−t can still be much larger than the

scale of QCD, ΛQCD.)
While the overall Reggeon exchange corresponds to an

object which is in the Glauber kinematic regime, we will
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see that the components that make up the legs and rungs
of the ladder diagrams in general do not fit this classifica-
tion, but are rather an ordered set of mostly collinear par-
ticles. Within this ordering scheme there is another small
parameter which differentiates the ladder rungs from or-
dinary collinear particles. This extra ordering parameter
is at present not included in the SCET classification.

3. KINEMATICS OF INTERNAL LINES IN THE

LADDER SUM

In this section we review the field theory treatment
of Regge exchange in order to make the connection to
SCET. Our interest is in understanding the nature of the
gluon kinematics for the internal lines within the ladder
sum. The derivations of this section are well known in
the Regge community and can be found in standard texts.
The novel aspect is the rephrasing of the results within
the context of SCET.

Regge behavior is readily found in field theory. The
ladder diagrams in general will depend on both s and t.
As s → ∞, only a tiny corner of the loop integration
region will give the leading contribution. In this region
the n-loop diagram yields

g2

s n!
[β(t) ln(−s)]n (11)

β(t) = − g2

16π2

∫

dy1dy2
δ(1 − y1 − y2)

[y1y2t − m2(y1 + y2)]
(12)

Here g is the coupling constant at each vertex in the lad-
der diagram. Summing over all possible ladder diagrams
leads to the result

g2

s

∞
∑

n=0

1

n!
[β(t) ln(−s)]n = g2sα(t) (13)

with the Regge exponent

α(t) = −1 + β(t) (14)

The power dependence of the sum is significantly differ-
ent from that of any one of the individual terms

The Regge exponent can also be written as a two di-
mensional integral

β(t) = − g2

16π2

∫

d2k
1

[k2 + m2][(k − q)2 + m2]
(15)

The transverse momentum in this integral is of order
√

|t|, for |t| > m2. The propagators for the horizon-
tal rungs do not appear in this result and the asymptotic
behavior can be found from a “pinched” graph where hor-
zontal lines are ommitted. The factor β(t) corresponds
to the two-dimensional integral over the transverse mo-
menta of the vertical legs.

3.1. Discontinuities of the ladder diagram

It is easier to understand the kinematics internal to the
ladder sum if we use the fact that the leading behavior
can be reconstructed from the discontinuity in the ladder
diagram[13, 25]. As usual the relationship is

Amp ∼ 1

n!
[ln(−s)]n ⇔ Disc ∼ π

(n − 1)!
[ln(s)]n−1

(16)
so that the discontinuity will contain one less power of
ln(s). There is a thorough treatment of this approach in
the fine lecture notes of Forshaw and Ross[13].

The discontinuity puts all the particles across the cut
on their mass shell. The imaginary part of the diagram
comes then directly from this on-shell configuration and
the real part comes from particles in the neighborhood
of the on-shell point. The relevant discontinuities of the
box diagram and the three-rung ladder are shown in Fig.
3, while the general diagram was previously shown in Fig
2.

p1 p1 − k1 p
′

1

k1

p2 p2 + k1 p
′

2

k1 + q

(a)

p1 p1 − k1 p
′

1

k1

k2

k1 − k2

p2

p2 + k1 p
′

2

k2 + q

k1 + q

(b)

FIG. 3: The discontinuity of the box diagram and of the
three-rung diagram.

For the box diagram of Figure 3a, it is immediately
clear from the argument given in Sec 2 that the ex-
changed gluons fall in the Glauber or Coulombic regime.
In each half of the diagram, the exchanged particle con-
nects an on-shell right moving particle to an on-shell left
mover. By the argument of Sec. 2 the exchanged par-
ticle then must satisfy Eq. 6. However, this kinematic
condition is not common to all the ladder diagrams, as
we will see next.

The first non-trivial example - the three rung ladder of
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Fig. 3b displays what turns out to be the typical pattern
in the ladder sum.

Let us label the exchanged gluon momenta - the verti-
cal leg - with an extra minus sign convention

ki = (k+
i ,−k−

i ,ki⊥) (17)

This convention is connected to the choice to draw the
momentum flowing down the ladder rather than up -
it will save many minus signs and reversed inequalities
in what follows. The discontinuity involves the integra-
tions over the available phase space plus the on-shell con-
straints, specifically[13]

Disc ∼
∫

d4k1d
4k2

× δ[(p1 − k1)
2]δ[(p2 + k2)

2]δ[(k1 − k2)
2] P (k, q)

(18)

∼
∫

d2k1⊥d2k2⊥

∫

dk+
1 dk−

1 dk+
2 dk−

2

× δ[(p1 − k1)
+k−

1 − k2
1⊥]δ[(p2 − k2)

−k+
2 − k2

2⊥]

× δ[(k1 − k2)
+(k2 − k1)

− − ∆k2
⊥] P (k, q)

where we have dropped the masses in the delta function
constraints, and where the propagators are

P (k, q) =
1

k2
1 − m2

1

k2
2 − m2

1

(k1 − q)2 − m2

1

(k2 − q)2 − m2

(19)
We can see from the delta-functions that the on-shell
constraints require an ordering of the momenta

p+
1 > k+

1 > k+
2 > p+

2 = 0

p−2 > k−
2 > k−

1 > p−1 = 0 (20)

At this stage, the delta-functions enforcing the on-shell
constraint for the upper and lower legs can be performed
using the k−

1 , k+
2 variables in order to obtain

Disc ∼
∫

d2k1⊥d2k2⊥

∫

√
s

dk+
1 dk−

2

× δ[(k1 − k2)
+(k2 − k1)

− − ∆k2
⊥] P (k, q)(21)

with

k−
1 =

k1
2
⊥√

s − k+
1

; k+
2 =

k2
2
⊥√

s − k−
2

(22)

After these simple constraints, the interesting remain-
ing constraint follows from the remaining integration of
the middle rung of the diagram

∫

√
s

dk+
1 dk−

2 δ[(k1 − k2)
+(k2 − k1)

− − ∆k2
⊥]P (k1, k2)

(23)
We would like to demonstrate that the region of Regge
exponentiation comes from the region of strong ordering

p+
1 >> k+

1

p−2 >> k−
2 (24)

which then forces the other components to be highly sup-
pressed

k−
1 =

k1
2
⊥√
s

∼ λ2
√

s ; k+
2 =

k2
2
⊥√
s

∼ λ2
√

s (25)

such that strong ordering holds throughout with

p+
1 >> k+

1 >> k+
2 >> p+

2 = 0

p−2 >> k−
2 >> k−

1 >> p−1 = 0 (26)

We will give a physical interpretation of this strong or-
dering later.

3.2. The kinematics of strong-ordering

In order to demonstrate the origin and effect of strong-
ordering of k1 and k2, let us break the integration region
up into four parts:
1) Both strongly ordered

k+
1 < η

√
s, k−

2 < η
√

s (27)

2) One strongly ordered

η
√

s < k+
1 <

√
s, k−

2 < η
√

s (28)

3) One strongly ordered

k+
1 < η

√
s, η

√
s < k−

2 <
√

s (29)

4) Neither strongly ordered

η
√

s < k+
1 <

√
s, η

√
s < k−

2 <
√

s (30)

where η is a small number independent of s.
Region 1 is the one with strong ordering as in Eq. 24.

In it, Eq. 25 holds for the small momenta. This implies
that all of the remaining propagators in P (k1, k2) are
largely transverse. For example,

k2
1 − m2 = −k+

1 k−
1 − k2

1⊥ − m2 (31)

≈ −ηk2
1⊥ − k2

1⊥ − m2 ≈ −(k2
1⊥ + m2)

i.e. the longitudinal components can be neglected and
the propagator is transverse. In this case the constraint
integral can be easily done

I1 =

∫ η
√

s

dk+
1 dk−

2 δ(k+
1 k−

2 − (k2
1⊥ − k2

2⊥))

=

∫ η
√

s

∆k2

⊥
/
√

s

dk+
1

k+
1

= ln(
s

η2(k2
1⊥ − k2

2⊥)
) → ln(s) (32)

where the final limit is valid as s → ∞. Completing the
calculation of the discontinuity in this region then leads
to

Disc ∼ ln(s)

∫

d2k1⊥d2k2⊥ (33)

× 1

k2
1⊥ − m2

1

k2
2⊥ − m2

1

(k1 − q)2⊥ − m2

1

(k2 − q)2 − m2
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which factors into the product of two transverse inte-
grations of the form seen previously in the field theory
calculation, i.e. Eq. 15. Adding in coupling constants
and the appropriate numerical factors leads to agreement
with the field theory result for the leading structure of
this loop amplitude.

Region 2 (and symmetrically in Region 3) does not con-
tribute to the leading approximation. The longitudinal
momentum does not decouple from the propagator and
there is no factor of ln s which develops. Even ignoring
the propagator factors we would have

I1 =

∫

√
s

η
√

s

dk+
1

k+
1

= − ln η (34)

This contains no factor of ln s.
In Region 4, the delta function constraint cannot be

satisfied since η2s >> (k2
1⊥ − k2

2⊥).
The strong ordering generalizes to the general ladder

diagram, Fig. 2. For all of the cut lines to be on-shell
requires

p+
1 > k+

1 > k+
2 > ..... > k+

n > p+
2 = 0

p−2 > k−
n > ..... > k−

2 > k−
1 > p−1 = 0 (35)

However again the main contribution comes from the
strong ordered regions

p+
1 >> k+

1 >> k+
2 > ..... >> k+

n >> p+
2 = 0

p−2 >> k−
n >> ..... >> k−

2 >> k−
1 >> p−1 = 0 (36)

This notion of strong ordering is perhaps the key fea-
ture of the Regge kinematic regime. The main effect is
to allow an approximation to the scattering amplitude.
If one considers the general denominator of the propa-
gator which is displayed in the first line of Eq. 31, we
see that the form that gets exponentiated in the Regge
sum arises only when the longitudinal product k+k− can
be neglected in comparison to the transverse momentum.
This is only in the strongly ordered region. This yields
further simplifications in the overall momentum integra-
tion. Because regions 2 and 3 do not contribute to the
leading ln(s) enhancement, one is free to approximate the
propagators by dropping the longitudinal momenta as in
the second line of Eq. 31 in these regions. The propa-
gators than have the factored form of Eq. 15, and the
full integration then can be done simply. In the example
above, the key result of the strong ordering is to allow
the propagators to be approximated by their transverse
components only, as in Eq. 15, 33.

4. THE HIERARCHY OF ORDERED

COLLINEAR GLUONS

Within SCET, the ladder diagrams become a true
multi-scale problem. The strong ordering condition

means that there is a continuum of scales from the largest
scale s down to the smallest scale t. Let us label the
magnitude of the strong ordering by the factor η, i.e.
k+

i+1 ∼ ηk+
i and k−

i−1 ∼ ηk−
i . There is no unique value of

η that one must use. Since, as explained above, the pri-
mary use of strong ordering is to allow an approximation
to the amplitude, for example to neglect k+

i+1 compared

to k+
i , the value of η is related to the accuracy of the

Regge result. Certainly η = 1/10 allows an accurate ap-
proximation, while η = 1/3 is not as good. Additionally,
since the momentum in the legs is integrated over, even
within one diagram there is not a fixed value of η. How-
ever, we will use this parameter as an indicator that the
dominant contributions come from regions which obey
the strong ordering condition. Presumably the fact that
the Regge region of high energy scattering begins at c.m.
energies somewhat above 1 GeV is related to the condi-
tion that s has to be far enough above the average t so
that the ladder approximation - with many rungs due to
the strong ordering - is valid.

For a concrete realization of what is implied by the
strong ordering condition, let us look at an extreme ex-
ample. Let us take

√
s = 105 in GeV units and consider

a 11 rung diagram. If we have momentum ordered by a
fixed factor of η = 1/10, then the momenta of the legs
of the ladder (labeled by ki) have the following ordering
(still in GeV units):

p1 = 105n

k1 = 104n + 10−5n̄ + k⊥

k2 = 103n + 10−4n̄ + k⊥

k3 = 102n + 10−3n̄ + k⊥

k4 = 101n + 10−2n̄ + k⊥

k5 = 100n + 10−1n̄ + k⊥

k6 = 10−1n + 100n̄ + k⊥

k7 = 10−2n + 101n̄ + k⊥

k8 = 10−3n + 102n̄ + k⊥

k9 = 10−4n + 103n̄ + k⊥

k10 = 10−5n + 104n̄ + k⊥

p2 = 105n̄ (37)

The rungs of the ladder satisfy ri = ki − ki+1. In this
example, we see a transition from right-moving collinear
gluons near the top rung to left-moving particles near
the bottom. Each is dominatingly transverse since k2

i =
−k2

⊥+10−1 GeV. There are two legs (k5,6) that are con-
sidered in the Glauber regime, in which the transverse
momentum is the largest component and both longitu-
dinal momenta are sub-dominant. It is such a leg that
allows the connection of the right-moving particles in the
upper portion of the diagram with the left-moving branch
in the lower portion. Of course, this example is incom-
plete since the k±

i momenta are really integrated over
rather than being in a fixed ratio. However it does illus-
trate an essential feature of strong ordering - there is a
transition of right-collinear through at least one Glauber
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leg to left-collinear within any given ladder diagram.
The physical interpretation of this is that we have a se-

ries of ordered and nearly collinear emissions. The rungs
of the latter can be taken to be on-shell, but the general
linear momenta is still high such that the collinear pinch
is applicable. The vertical legs of the ladder are off-shell
by order t/s, but also carry a high linear momentum
along the n or n̄ direction. The legs near the top of the
ladder are dominantly right-moving, those near the bot-
tom are dominantly left-moving. Somewhere in the chain
there is a Glauber leg connecting these. The whole or-
dered set of diagrams sums to produce an net effect that
is equivalent to a Glauber or Coulomb exchange.

When we reformulate this process in the language of
SCET we encounter a difficulty with the multiple scales.
In standard SCET ordering one considers a small param-
eter λ and orders the effective field theory in powers of
λ. Here, however, we have at least two small parame-
ters. We can take one of these to be λ ∼

√

−t/s which
is treated as an extremely small parameter in the Regge
limit. The other is what we have called η above, i.e. the
strong ordering parameter. This parameter is indepen-
dent of s, t and clearly η >> λ ≈ 0 in the Regge region.
If we consider a vertex along one of the legs of a right-
moving legs neat the top of a ladder diagram, the relevant
ordering of the momenta is

ki =
√

si(1, 0, 0)

ki+1 =
√

si(η,∼ 0, λ)

ri = ki − ki+1 ∼ ki + O(λ) (38)

with λ ∼
√

−t/si, λ << η << 1 and si ∼ O(ηis) >>
Λ2

QCD. In words, we would label particle ri as being
collinear to ki. Because of the two small parameters,
particle ki+1 does not have a standard name in SCET.
We can give it a name of “ordered collinear” to imply
that it shares the directions of the original gluon, yet is
at a parameterically smaller momentum. That is:

ordered collinear ⇒ p ∼
√

s(η, λ2, λ), p2 ∼ sλ2

(39)
with λ << η << 1. When one has a whole ladder of such
vertices, one has a highly multiscale problem. If the ex-
change particles are treated as regular collinear particles,
the ordered region is at an endpoint of the integration
over the longitudinal momentum, but properties derived
for collinear particles in general will not be appropriate
for this endpoint. In particular, a treatment of general
collinear particles will miss the Regge kinematic region
unless care is taken to properly treat the strongly ordered
region and also to include the potential for a Glauber ex-
change connecting left-movers and right-movers.

Even though most of the particles in the ladder dia-
gram are of the ordered collinear variety, the net effect
of a Reggeon exchange falls in the Glauber or Coulombic
kinematic regime.

5. SUMMARY

The application of Regge ideas to QCD has become
an extensive subfield. The main results are that there
appears a Reggeon with the quantum numbers of the
gluon - the Reggeized gluon[6, 7, 8] - as well as a hard
Pomeron[10] with vacuum quantum numbers. The Reg-
gized gluon is not just the “dressing” of a gluon, but is
actually built out of two gluon exchange in a spin-one
color octet channel. The hard Pomeron is then built out
of the exchange of two Reggeized gluons, and is a color
singlet object.

The power-law behavior of Regge scattering has the
possibility to influence the phenomenology of high energy
processes. An example that already exists in the litera-
ture is the work by DGPS[26] on final state interactions in
B meson decay. In this work, the region of soft final state
interaction was shown to be of order 1/m2

B; however, the
exchange of a soft Pomeron provides a scattering ampli-
tude which grows as s1.04 ∼ (m2

B)1.04 which removes the
nominal suppression. While this study was phenomeno-
logical in nature and invoked the soft Pomeron, it pro-
vides the archetype for how Regge phenomena can mod-
ify the power counting of perturbative calculations[27].

To proceed further, one should calculate directly with
the Reggeized gluon and the hard Pomeron. However,
the matching of these degrees of freedom with the usual
gluons is non-trivial, and we hope to report on this
matching in a future publication. This should allow one
to place the usual hard Regge phenomenology on a better
footing as well as to complete SCET through the inclu-
sion of the Regge region. The matching to soft Regge
physics is more difficult and it is not clear that this can
be accomplished within SCET.
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